Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Redetermination of 1,2-bis(2-bromobenzylidene)hydrazine

Ming-Hua Yang and Yun-Fa Zheng*

Department of Chemistry, Lishui College, 323000 Lishui, ZheJiang, People's Republic of China
Correspondence e-mail: zjlsxyhx@126.com

Received 5 November 2007; accepted 11 November 2007
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.051 ; w R$ factor $=0.130 ;$ data-to-parameter ratio $=13.8$.

The title compound, a Schiff base, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}$, has crystallographically imposed inversion symmetry. The molecule is planar, the largest deviation from the plane being 0.055 (4) \AA for the Br atom. Weak intramolecular hydrogen bonding ($\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br})$ stabilizes the planar conformation. The structure has been reported previously [Marignan, Galigné \& Falgueirettes (1972). Acta Cryst. B28, 93-97], but the quality of the refinement has been greatly improved.

Related literature

The crystal structure of the title compound was previously reported by Marignan et al. (1972). For related literature, see: Alemi \& Shaabani (2000); Alizadeh et al. (1999); Allen (2002); Johnson et al. (1996); Kim \& Shin (1999); Wang \& Zheng (2007).

Experimental

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}$
$M_{r}=366.06$
Monoclinic, $P 2_{1} / c$
$a=6.8715$ (8) A
$b=4.0423$ (5) \AA
$c=23.602(3) \AA$
$\beta=91.058(2)^{\circ}$
$V=655.48(14) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=6.17 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.26 \times 0.22 \times 0.16 \mathrm{~mm}$

Data collection

Bruker APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.218, T_{\text {max }}=0.377$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051 \quad 82$ parameters
$w R\left(F^{2}\right)=0.130 \quad \mathrm{H}$-atom parameters constrained
$S=1.04$
$\Delta \rho_{\text {max }}=1.33 \mathrm{e}^{\AA^{-3}}$
1131 reflections

3700 measured reflections 1131 independent reflections 979 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.136$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1$	0.93	2.79	$3.203(4)$	108

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are grateful to the Natural Science Foundation of Zhejiang Province and the Research Foundation of Lishui University (grant No. FC06002) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2272).

References

Alemi, A. A. \& Shaabani, B. (2000). Acta Chim. Slov. 47, 363-369.
Alizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. \& Shamsipur, M. (1999). Pol. J. Chem. 73, 915-925.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2004). APEX2 (Version 1.22), SAINT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Johnson, C. P., Atwood, J. L., Steed, J. W., Bauer, C. B. \& Rogers, R. D. (1996). Inorg. Chem. 35, 2602-2610.
Kim, G. J. \& Shin, J. W. (1999). Catal. Lett. 63, 83-89.
Marignan, J., Galigné, J. L. \& Falgueirettes, J. (1972). Acta Cryst. B28, 93-97.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, L.-G. \& Zheng, Y.-F. (2007). Acta Cryst. E63, m390-m391.

supplementary materials

Redetermination of 1,2-bis(2-bromobenzylidene)hydrazine

M.-H. Yang and Y.-H. Zheng

Comment

Schiff base ligands have significant importance in chemistry, especially in the development of Schiff base complexes, (Johnson et al., 1996; Alizadeh et al., 1999; Wang \& Zheng, 2007). Schiff bases that have solvent-dependent UV/vis spectra (solvatochromicity) can be suitable NLO (nonlinear optically active) materials (Alemi \& Shaabani, 2000). They are also useful in the asymmetric oxidation of methyl phenyl sulfide and give good enantioselectivity (Kim \& Shin, 1999). The structure of the title compound (I), has been reported previously (Marignan et al., 1972), but the results of this new study are of higher precision.

The molecular structure of the title compound has crystallographically imposed inversion symmetry located in the middle of the $\mathrm{N}-\mathrm{N}$ bond (Fig. 1). The molecule is planar with the largest deviation from the mean plane being 0.055 (4) \AA at Br 1 .

There is one intramolecular hydrogen bond ($\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1$) (Table 1). The $\mathrm{C} 7-\mathrm{N} 1$ are $1.272(5) \AA$, indicative of a $\mathrm{C}=\mathrm{N}$ double bond. The other $\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{Br}$, and $\mathrm{C}-\mathrm{C}$ distances show no remarkable features (Allen, 2002). It is interesting to note that neighboring molecules are separated by relatively short $\mathrm{Br} \cdots \mathrm{Br}$ contact with 3.7702 (7) \AA. These $\mathrm{Br} \cdots \mathrm{Br}$ interactions may help to stabilize the packinge.

Experimental

Under nitrogen, a mixture of 2-bromobenzaldehyde ($3.7 \mathrm{~g}, 20 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{SO}_{4}(3.0 \mathrm{~g})$ and hydrazine (30% in water, 10 $\mathrm{mmol})$ in absolute ethanol $(20 \mathrm{ml})$ was refluxed for about 12 h to yield a yellow precipitate. The product was collected by vacuum filtration and washed with ethanol. The crude solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ and washed with water $(2 * 10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$. After dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum, and yellow solid was isolated in yield $92 \%(3.1 \mathrm{~g})$. Colourless single crystals of the compound suitable for X-ray analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and absolute ethanol (4:1) by slow evaporation of the solvent at room temperature over a period of about two weeks.

Refinement

All H atoms were placed in calculated positions and treated as riding on their parent atoms with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

The maximum residual peak is located on the $\mathrm{C} 1-\mathrm{Br} 1$ bond, $1.04 \AA$ from Br 1 .

supplementary materials

Figures

Fig. 1. Molecular view of (I) showing the atom-numbering scheme. Displacement ellipsoids are represented at the 30% probability level. H atoms are shown as small spheres of arbitrary radii. [Symmetry code (i):- $-x+1,-y+1,-z+1$]

1,2-bis(2-bromobenzylidene)hydrazine

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}$
$M_{r}=366.06$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2 ybc
$a=6.8715$ (8) \AA
$b=4.0423$ (5) \AA
$c=23.602(3) \AA$
$\beta=91.058(2)^{\circ}$
$V=655.48(14) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& F_{000}=356 \\
& D_{\mathrm{x}}=1.855 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Mo} \mathrm{~K} \mathrm{\alpha} \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1131 \text { reflections } \\
& \theta=3.0-25.1^{\circ} \\
& \mu=6.17 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.26 \times 0.22 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.218, T_{\text {max }}=0.377$
3700 measured reflections
1131 independent reflections
979 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.136$
$\theta_{\text {max }}=25.1^{\circ}$
$\theta_{\min }=3.0^{\circ}$
$h=-8 \rightarrow 7$
$k=-4 \rightarrow 4$
$l=-28 \rightarrow 28$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.130$
$S=1.04$
1131 reflections
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0848 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=1.33 \mathrm{e} \AA^{-3}$

82 parameters
$\Delta \rho_{\min }=-0.82 \mathrm{e} \AA^{-3}$
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.8273(7)$	$0.4656(10)$	$0.65065(17)$	$0.0358(9)$
C2	$0.9996(8)$	$0.3733(11)$	$0.67720(19)$	$0.0428(11)$
H2	1.0185	0.4150	0.7157	0.051^{*}
C3	$1.1421(7)$	$0.2214(12)$	$0.6474(2)$	$0.0480(12)$
H3	1.2571	0.1573	0.6657	0.058^{*}
C4	$1.1158(8)$	$0.1618(12)$	$0.5895(2)$	$0.0477(12)$
H4	1.2120	0.0562	0.5690	0.057^{*}
C5	$0.9434(7)$	$0.2629(13)$	$0.56299(19)$	$0.0410(10)$
H5	0.9275	0.2287	0.5242	0.049^{*}
C6	$0.7955(7)$	$0.4119(11)$	$0.59219(17)$	$0.0345(9)$
C7	$0.6189(6)$	$0.5142(11)$	$0.56233(17)$	$0.0407(10)$
H7	0.5262	0.6384	0.5811	0.049^{*}
Br1	$0.63312(7)$	$0.66624(12)$	$0.695542(17)$	$0.0464(3)$
N1	$0.5899(6)$	$0.4354(12)$	$0.51072(16)$	$0.0471(10)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C 1	$0.041(2)$	$0.031(2)$	$0.0346(19)$	$-0.0041(19)$	$-0.0059(18)$	$0.0023(17)$
C 2	$0.046(3)$	$0.044(2)$	$0.038(2)$	$-0.004(2)$	$-0.010(2)$	$0.0021(18)$
C 3	$0.036(3)$	$0.052(3)$	$0.055(3)$	$0.005(2)$	$-0.013(2)$	$0.003(2)$
C 4	$0.038(3)$	$0.054(3)$	$0.052(3)$	$0.007(2)$	$0.002(2)$	$0.000(2)$
C 5	$0.032(2)$	$0.052(2)$	$0.039(2)$	$0.003(2)$	$-0.0008(19)$	$-0.001(2)$
C 6	$0.032(2)$	$0.037(2)$	$0.034(2)$	$-0.0035(18)$	$-0.0010(18)$	$0.0004(16)$
C 7	$0.032(2)$	$0.050(3)$	$0.040(2)$	$0.009(2)$	$-0.0043(18)$	$0.000(2)$
Br 1	$0.0442(4)$	$0.0549(4)$	$0.0400(4)$	$0.00242(19)$	$0.0035(2)$	$-0.00488(18)$
N 1	$0.038(2)$	$0.067(2)$	$0.0362(19)$	$0.013(2)$	$-0.0067(16)$	$-0.0035(19)$

supplementary materials

Geometric parameters $\left({ }_{A},^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 2$	$1.381(7)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.410(5)$
$\mathrm{C} 1-\mathrm{Br} 1$	$1.901(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.362(8)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.396(7)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.391(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$121.3(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	$117.9(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{Br} 1$	$120.9(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.4(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.1(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$118.9(5)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.6

$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.378(7)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{C} 7$	$1.452(6)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.271(5)$
$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{~N} 1-\mathrm{N} 1{ }^{\mathrm{i}}$	$1.425(8)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.6
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$122.3(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	118.9
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	118.9
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$117.0(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.0(4)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$123.0(4)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$120.6(4)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{H} 7$	119.7
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.7
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 1{ }^{\mathrm{i}}$	$111.6(5)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$D-\mathrm{H} \cdots A$
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{Br} 1$

D-H
0.93
$\mathrm{H} \cdots A$
2.79
$D \cdots A$
$D-\mathrm{H} \cdots A$
3.203 (4) 108

Fig. 1

